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Almtract--An alternative formulation of the solid phase stress is given for a flowing fluid-solid mixture. 
This formulation allows us to treat all three sources of the solid phase stress with the same concept. This 
concept utilizes a control surface and considers stress as the force per unit area on such a surface. The 
three solid phase stress sources include the force between the particles, the rate of momentum transfer 
due to random particle motion and the hydrodynamic interaction between the particles and the fluid. 
Emphasis is put on the third of the three, because the first two are well-understood from the given concept. 
The hydrodynamic contribution is called the "particle-presence stress". The resulting formulation of this 
stress is identical to Batchelor's, in which a volume-averaging concept is used. The present result includes 
the particle inertia effect. It is also shown that the resulting solid phase pressure under special conditions 
reduces to a form proposed previously in the literature. 
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1. I N T R O D U C T I O N  

The mathematical model of a flowing fluid-solid mixture is far from complete. Current analyses 
of  such flows commonly rely on semi-empirical formulas. The rheological parameters used in these 
formulas depend on the ranges of solid concentration and flow rate (Thomas 1965). It is unreliable 
to extrapolate these empirical formulas to situations beyond the test range. In order to more 
rigorously determine the rheological parameters, micromechanics has been utilized recently. 
Pioneer works using this approach include, among others, Batchelor (1970), Ishii (1975) and Drew 
(1983). 

The micromechanics approach derives constitutive equations by analyzing the interactions of  the 
fluid and solid constituent at the individual particle level. The result of this analysis is then averaged 
to obtain various macroscopic transport coefficients such as diffusivity and viscosity. In principle, 
if all the micromechanics at the individual particle level are incorporated, one should obtain 
transport coefficients explicitly and free from empirical constants. However, although theories have 
been successfully developed in this manner for a rapidly flowing solid dispersed in a vacuum, 
attempts to extrapolate this to a fluid-solid mixture have just begun. 

When considering the fluid effect many difficulties are encountered. At low Reynolds number, 
the hydrodynamics in a mixture of  high solid concentration is still an unsolved problem. Additional 
complications arise at high Reynolds number because of the existence of  fluid turbulence and its 
interaction with freely moving solid particles. In view of the current understanding of  these subjects, 
there is a long way to go before we can analytically derive the transport coefficients in a fluid-solid 
mixture flow. Nevertheless, research in this direction provides more insight and thus improves the 
existing semi-empirical formulas. 

Two key steps in attempting a micromechanical approach are first, identifying and modeling the 
mechanisms to be incorporated; second, constructing an averaging method. The first identifies the 
flow regime to be studied and quantifies microscopic information, such as the forces between the 
interacting solid particles and the forces between a particle and the surrounding fluid. The second 
provides a mathematical framework to bridge the micro and macrobehavior of the fluid-solid 
mixture. Without a formal structure provided by the averaging method, confusion can easily arise 
when detailed mechanisms are to be incorporated. This confusion is seen when comparing several 
existing models for the stresses in a fluid-solid mixture flow (e.g. Ishii 1975; Drew 1983; McTigue 
et  al. 1986). 
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The present work discusses the second step. Our ultimate goal is to provide a physically 
transparent and mathematically rigorous method. This method is used to model constitutive 
equations in the balance laws for a fluid-solid mixture. 

The balance laws for the mass and momentum in flows of a fluid-solid mixture have been given 
by Ishii (1975) as follows: 

•pS 
~-  + V.(p~u) = 0 [la] 

~/~u ) p ~-+u.Vu =pSg+m+V.(cTS) [lb] 

and 

Op f 
8~- + V. (pfv) = 0 [2a] 

P + v .  v v  = p fg - m + v . [ ( l  -  )xq. [2b] 

In the above, pS= psC and pf-----pf(l --C) are the partial densities of the solid and fluid phase, 
respectively, where c is the solid concentration; p~ and pr are the solid and fluid material density, 
respectively; the mass-weighted average of the solid and fluid velocity are u and v, respectively; the 
phase interaction force per unit volume is denoted by m and the mass-weighted stress for the solid 
and fluid phase are T ~ and T f, respectively. 

In this paper, we discuss the modeling of T s for an interacting fluid-solid mixture. A similar 
procedure may be applied to model other constitutive equations in the solid momentum and energy 
equation. This will be the subject of a future study. 

2. M O D E L I N G  THE SOLID PHASE STRESS 

Consider an arbitrary control volume V in a fluid-solid mixture, as shown in figure 1. This 
mixture consists of a Newtonian fluid and uniform spherical particles. This control volume may 
be decomposed into Vs and Vf representing the solid and fluid portion, respectively. The solid 
portion Vs is shaded in figure 1. The corresponding control surface S may also be decomposed into 
two portions Ss and Sf representing the parts of S occupied by the solid and fluid phase, respectively. 
The solid portion S~ is shown as thick black lines in figure I. 

v 

Figure 1. A control volume in the mixture. 
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Total surface force acting on S and total body force acting on V are responsible for the change 
of linear momentum inside V. The two-phase approach adopted by Ishii (1975) and many others 
requires separation of the total stress into the s ";d and fluid phase stress T s and T r introduced in 
[lb] and [2b]. If lcq is the local unit normal of S, TS'l~ is the force acting on Ss per unit area of 
S~ and T r.lq is the force acting of Sr per unit area of Sf. 

From fluid mechanics, 

T f=  T v + T t [3] 

where T v and T' are the viscous and turbulent stress acting on Sf from the fluid motion. The solid 
phase stress T s, in general, may come from the momentum transfer of solid particle collisions, the 
random motion of the solid particles and the hydrodynamic force acting on the surface of the 
particles. Thus, 

T s = T c + T k + T p. [4] 

The physical meanings of these three components are given below. 
The collisional stress T c is the rate of momentum transfer across S, per unit area of  S ~ due to 

particle collisions. Bagnold (1954) modeled this stress as 

T ¢ = f ~ A M ,  [51 

where f is the particle collision frequency, ~ is the average number of particles cut by unit area 
of  S and AM is the average momentum transfer per collision. Later works (e.g. Jenkins & Savage 
1983; Lun et al. 1984) further modified the formulation of  T ~ based on the kinetic theory of 
gases, but the basic concept remains unchanged. The kinetic stress T k is the momentum transfer 
due to the random motion of solid particles and has been modeled as (e.g. Lun et al. 1984; 
Babi6 1985) 

Tk = < Ps U"U" >, [6] 

where < > is the ensemble average, u" is the random velocity of particles defined by the difference 
of  a single velocity realization of  a particle and the mass-weighted average velocity of the solid 
phase. Here, we have tacitly assumed that the balance equations [la, b] and [2a, b] are time- 
averaged with respect to a very small time scale over which macroscopic properties are stationary. 
Without doing so, transfer of momentum during instantaneous collisions can not be captured. 
A similar time scale has been used to derive the Reynolds stress from turbulence T t. 

The hydrodynamic contribution of the solid phase stress, T p, is less understood from the above 
viewpoint. That is, a formulation of T p as the force per unit area on S, due to the fluid force 
surrounding it is not available in the literature. Batchelor (1970) gave a mathematical derivation 
of TP, defining it as the volume average of stress residing in the solid particles. For  completeness, 
this derivation is repeated in appendix A. Batchelor's approach provides a very short and elegant 
formulation. It easily handles the hydrodynamic contribution of the solid phase stress. But 
conceptually it is hard to extend this approach to include the other two components T c and T k. 
This is because these other two stress components are strickly modeled from the momentum 
transfer rate across a control surface, which is a different concept from the volume-averaging of 
internal solid stress. The alternative formulation of  T v given here is based on a control surface 
concept identical to what is used to obtain T ¢ and T k. 

We will call T p the "particle-presence" stress, because this stress is not a result of the particles' 
motion, but is rather a result of their existence in the fluid flow. Their rigid boundary alters the 
local fluid flow pattern and thus changes the bulk rheological property. 

The existence of T p is easily seen if we consider a dilute slow simple shear flow with vanishing 
particle Reynolds number. This flow has been studied by Einstein (1906) and Batchelor & Green 
(1972) to give a total shear stress 

T~ = (1 - c)T~ + cT~ = 2p(1 + 2.5c)E~, [71 

where p is the fluid viscosity and E,j is the bulk strain-rate, defined in appendix B. We now study 
the five components in [3] and [4] for this flow. In this flow, fluid is laminar, hence T ' =  0. The 
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Figure 2. Definition sketch of a unit control surface. 

concentration approaches zero so that there is no particle collision, consequently T~= 0. More- 
over, in this flow, particles are driven by a laminar fluid motion, hence they do not fluctuate if the 
body force is stationary. In the absence of particle collision induced random motion, this implies 
T k=  0. At this point, only T V and T p are still present. For the Newtonian fluid considered here, 
the shear stress T~=2#{e f} ,  where e f is the local fluid shear strain rate, { } indicates the 
mass-weighted average. In appendix B, it is shown that (1 -c ){e f }=Ei j .  Therefore 
(1 - c)T~, = 2pE~. The rest of  the terms in [7], i.e. 5cl~E o, must come from the only remaining solid 
phase stress T o . 

Let us consider a unit surface area A on S with unit normal /q, as shown in figure 2. Denote 
the portion of this unit area occupied by particles as As, the thick black lines in figure 2. A total 
of  ~ particles lie on A. These are called "surface particles". All surface particles with their center 
inside the control volume are called "inner particles", and surface particles with their center exterior 
to the control volume are called "outer particles". It should be noted that an outer particle still 
has some fraction of its volume inside the control volume. Similarly, an inner particle has some 
fraction of its volume exterior to the control volume. I f  particles are randomly distributed in such 
a way that the number density of  particles does not vary in a length scale equal to or greater than 
the particle's largest dimension, then, on average, there are an equal number, i.e. :~/2, of  inner and 
outer particles on a unit control area. 

The hydrodynamic contribution of the solid phase stress is the force acting on As due to the 
fluid force on the surface of the surface particles. Since As lies inside the particles, it would 
seem that one needs to know the stress distribution inside these particles to obtain T p. This is in 
fact unnecessary. The alternative is to relate the force acting inside the particle to the force acting 
on the surface of the particle. The total surface force sf, which includes both the normal and 
tangential component,  acting on the solid portion of the unit control surface can be expressed as 
follows: 

I I I I 

[8] 

and o are the partial surface forces acting on the curved area of  where, as shown in figure 3, sp sp 
the inner and outer particles, respectively; and s~L and s~' are the total surface force acting on the 
particle fraction of the inner and outer particles, respectively. For graphical simplicity, only the 
tangential components of all forces are shown in figure 3. 

A unit control surface cuts through, on average, an equal number, 2 /2 ,  of  inner and outer 
particles. Consider the inner particles for now, each of them has a different amount  of  its surface 
area exposed to the exterior fluid, as shown in figure 2. For any given fi, shown in figure 4, such 
that fi.N >/0, there is an infinitesimal surface area on an inner particle associated with this 
direction. This area may or may not be exposed to the exterior fluid. I f  it is, then the hydrodynamic 



SOLID PHASE STRESS IN A FLUID-SOLID MIXTURE 261 

o u t e r  partmle Y 
s~ s; 

Figure 3. Various types of surface forces. Figure 4. Coordinate systems. 

L Z 

force acting on it contributes to s~ and s~,. Assuming an isotropic distribution of particles, the depth 
with which a random control surface S cut through a particle is uniformly distributed along its 
diameter. Therefore, the probable number of inner particles on a unit control surface with the 
infinitesimal area associated with tt exposed to the exterior fluid is (~/2)ti.lq. From figure 4, 

~a.S=~ ~- ~- cos ¢. [91 

Similarly, for a given tt where it. ~ ~< O, the probable number of outer particles on a unit area with 
the infinitesimal area associated with tt exposed to the interior fluid is 

---~- fi 'N = ---~-cos ¢. [10] 

Utilizing [9] and [10] and recognizing that the infinitesimal surface area of a sphere with radius R 
is R 2 sin ~b dO de,  one may obtain 

-- 30 (~'iknk)~---2COS¢) R2dOsin~pdqb 

=fa2ota.s~o)'Y"knk(~njNj)dA--f~t~.s<~o, Ziknk(--~njNj) dA' 

[ll] 

[12] 

where S~k is the fluid stress component on the surface of a particle and A0 is the surface area of 
a particle. Let n be the solid particles' number density per unit volume of the mixture, it has been 
shown that ~ = 2nR (Shen & Ackerman 1982). Using this, [12] becomes 

k ,13, Sp 
- -  l \ J ~-~° (~.i~ ~> 0) • 

=(nfAo~nkrjdA)N 1. [14] 
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r cos 4~ = R cos ~' 

~os ~' = ~ ~os 

Figurc 5. Corresponding relation bctwecn dV and dS. 

The total surface surface force, s~t and st, acting on the particle fractions can be obtained by 
relating them to V.Z inside the particle using Gauss' theorem. That is, 

f ZiknkdA=fv~3kZi~dV [15] 

where A ~ and V~), as shown in figure 2, are the total area and volume of the particle fraction outside 
the control volume for an inner particle or inside the control volume for an outer particle. Consider 
first an inner particle, as shown in figure 5. Let r be a position vector originating from the center 
of the particle. An infinitesimal volume dV locates at the tip of r. The probability of this dV being 
exterior to the control volume is identical to the probability of having a surface area "at  the same 
level" as d V exposed to the exterior fluid. As in the development of  [9], one finds that the probable 
number of inner particles on a unit control surface having a given d V exterior to the control 
volume is 

~ ' r  
~- cos ~b' = ~ ~ cos ~b = nr cos ~b, [16] 

where the angles 4) and 4~' are defined in figure 5 and r is the distance from center of the particle 
to the infinitesimal volume d V. In a similar way, the probable number of outer particles in a unit 
area which have a given d V inside the control volume is - n r  cos q~. Utilizing the above observation 
and [15] and [16], 

- E st + E st = - ?k Z,, (nr cos ¢) r  2 dr dO sin ¢ dO 
do do 

+ 8k2;~k(--nr COS 4~)r 2 dr dO sin ~b d~b [171 
3~J0 

= - f~,~ s~o) e~Z,,(nrjNj)dV + f:o(a.s..o) OkZ'it'(-nrjNj)dV [18] 

where V0 is the volume of a particle. From [8], [14] and [19], the total surface force on the 
intersectional area A, per unit control surface can thus be formulated as 
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Therefore, the final formulation of the particle-presence stress is 

= (fAor,,k,,,,rjdA-fVoO,,S,,,rjdV), [22] 

which is identical to Batchelor's (1970) result for a slow flow of a dilute fluid-solid mixture. 
However, this derivation clearly reveals the physical origin of the particle-presence stress as 
well as providing a consistent procedure to incorporate the other two solid phase stresses "V 
and T k. 

The above analysis may be extended straightforwardly to arbitrary shape particles. The 
formulation given by [22] remains the same if the orientation of the particles is uniformly 
distributed. Otherwise, the probability of the orientation distribution will enter the stress-averaging 
in [22]. 

3. C O R O L L A R I E S  OF THE PARTI CLE- PRESENCE STRESS 

We now take the general formulation of the particle-presence stress given in [22] and obtain 
two specific results. These two results, to our knowledge, have not been rigorously obtained 
previously. 

First, let us obtain the expression for the second term on the r.h.s, of [22]. This term is associated 
with the particle's inertia and was neglected by Batchelor & Green (1972). In that work, they 
studied a slow simple shear flow of a dilute fluid and spherical particle mixture. By integrating the 
stress distribution of a Stokes flow around a sphere, they showed that 

-~o S-,iknkridA = 51~E o, [231 
0 

which gave Einstein's result. In the case of a slow dilute flow, any particle inertia is indeed 
negligible. In general this may not be true. Applying the equation of motion to an infinitesimal 
volume inside the solid phase shows that 

Ok,Y, ik = Ps I2~_ Psg~ [24] 

where the overdot represents the usual time derivative for a rigid body, Vii is the local velocity of 
a particular point inside the solid particle and g~ is the body force per unit mass. Substituting [24] 
into the second term on the r.h.s, of [22] yields 

fvo&~S,~krjdV= Ps fvo(f"~-g3rjdV 

Vo JVo 

Ps fro l?lodV" [25] 

The local velocity inside a rigid particle is 

V ~ = V + 1-~ + r, [26] 

where V is the velocity of the center of the particle and f l  is the angular velocity of the particle. 
The derivative of [26] yields 

¢ ¢ ' = ¢ ¢ + ~  x r + ~  x i' 

= £ + ~  x r + f l  x (11 x r). [27] 
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Changing the above into the indicial notation and simplifying, [27] becomes 

I)'li -~ (/'i -[- £ilk~lrk -~" [~k~'~irk -- ~'~k~"~kri. [28] 

Substituting [28] into [25] yields 

f vo ~,S~,rjdV = ps f vo(f/~rj + e~k~,r, rj + ",t2~rkrj- t2~"kr, rj) dV 

= p ~ ( ~ , f  r j d V + Q t k ~ t f  r k r j d V + ~ k ~ I  r k r j d V - - ~ k f l k f  r, r jdV) .  [29] 
Vo dVo dvo vo 

Since 

[29] may be simplified to yield 

f v rirjdV = ~srrR56o, [30] 
o 

f 4rr Vo OkZ~krj dV = ~ psRS(eUkt)t6kj + f~kf~Zfkj - ~ ' ~ k ~ k 6 i j )  

4r~ P~ R S(ei~l + ~if~J _ f~k~k 6O)" 
15 

Hence the second term in [22] becomes 

1 f" 
| c3,ZgkrjdV = ~psR2(Qtj~t-I - f l i~ j  -- ~dk~dk6ij ). 

7OVo.J 

[31] 

The above is the contribution of particle inertia to I~,j. For a free spherical particle in an infinite 
fluid, Dr = ½eUk0jVk, where v k is the fluid velocity. Hence, by comparing [23] and [32], for a dilute 
system in the Stokes regime such that (prR2Ojvk)/t~ ,~ 1, the second term in [22] is negligible when 
compared with the first term. 

Secondly, the solid phase pressure from T p will be obtained. This pressure has been proposed 
by Givler (1987) as the average fluid pressure around a particle's surface. Using the definition in 
continuum mechanics, the dynamic pressure pC of any continuum is 

where pP is the pressure force from 

pC= 1 c [331 -- ~ Tii 

where T~ is the stress tensor in the continuum. If one ignores the second term in [22], the above 
yields 

3V0 Ziknkn~sinc~ dO dO, [34] 

T p. Substituting the Newtonian fluid stress into [34] yields 

PP = - 3--Voo (--p6~k -- ~#eu6~, + 2#e~k)nkn~ sin ~b d~b dO [35] 

where p is the fluid pressure. Due to the incompressibility of  the fluid the second term in the 
parentheses in [35] is zero. For a slow flow of a dilute fluid-solid mixture, the third term of the 
integrand vanishes, as shown in appendix C. For this type of  flow, the solid phase pressure 
reduces to 

= p sin 4~ d4~ dO, [361 
PP "~00d0 do 

[32] 
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which is the average hydrodynamic pressure on the surface of a particle, identical to what Givler 
(1987) has proposed. However, in a general case, this result may be modified when the third term 
of the integrand in [35] does not vanish. 

4. CONCLUSION 

A physical explanation of the particle-presence stress is given first. This stress is from the 
hydrodynamic interaction between the fluid and solid phases in a flowing mixture. A mathematical 
derivation of the stress is then provided in a consistent manner with which the other solid phase 
stresses are derived. This derivation uses the concept that stresses are forces per unit area on the 
control surface of an arbitrary control volume. The final result is shown to be identical to 
Batchelor's (1970)--in which a volume-averaging method was used and the formulation was 
conceptually different from what is given here. Lastly, the final result of the particle-presence 
stress is studied to include an expression for the inertia contribution, which may become 
important in the case of a nonvanishing particle Reynolds number. This inertia formulation 
has not been reported previously in the literature. The solid phase pressure from the 
hydrodynamic force contribution is also derived from the definition in continuum mechanics. The 
result is identical to a previously proposed form for a slow flow of a dilute fluid and spherical 
particle mixture. In general, additional terms that have not been discovered previously may also 
be present. 

The approach given in this work is, we believe, physically transparent and also mathematically 
rigorous. It can be easily extended to model other constitutive relations in a two-phase flow. 
This will be the subject of future studies. 
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A P P E N D I X  A 

This appendix gives the derivation by Batchelor (1970) of the solid phase stress in a dilute 
fluid-solid mixture where particle's collisions are ignored. 

Let xj be components of the position vector of an infinitesimal volume d V inside a particle of 
volume V0, and Z~k be the components of the stress tensor in the particle. The following may be 
derived: 

o r  

f OkZikXjdV=fv Ok(Z~kXj)dV--f ZikOkXjdV [A.1] VO 0 VO 

=fAoNiknkxjdA--fvoSodV [A.3] 

fvo,~,jdU= fAo~,,n,,xjdA- f,~oe,,~,kXjdV, [A.4] 

where A 0 is the surface of V0. Let Vr be a representative volume inside a fluid-solid mixture. The 
linear dimension of Vr is determined in such a way that it should be sufficiently large compared 
with the particle spacing. On the other hand, it should be small enough to provide a uniform flow 
field inside Vr, within which there are a number of identical particles each of volume V0. The solid 
phase stress, defined as the average stress in all the solid particles per unit volume of solid, is 
therefore, 

= 1 d r =  1 E v) ,  

where the Z is over all particles in Vr. The above may be further reduced as follows. Let xj = Pj + rj, 
where Pj are the components of the position vector of the center of a particle. Substituting this 
into the above gives 

-1--~- E - OkE,kxjdV) ~-YVo (fAo ~'*"~x~dA fVo 
_l__ E -Ev o (fAoXiknkrjdA + fAoXiknkPjdA -- fvo~kZ'~rjdV-- fvoOkX'kPJ dV) 

_1__ E 

_l_Z_ x -EVo (fAor''"*r'dA + fvoe'~Z'*ejdV + f,~o z''ak''~dv [A.5] 

- ~ E d v). [A.61 - EV o (fAoXiknkrjdA -- fVo ~kE'kri 

The third term in [A.5] is identical to zero, because ~kPi= 0 for any onc particle. Since the 
uniformity condition is assumed in this representative volume V,, (Z Vo)/V = c and the summation 
is over a total of nV identities. Therefore [A.6] is identical to [21]. 
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A P P E N D I X  B 

This appendix derives the bulk strain-rate tensor in a fluid-solid mixture. 
By definition, the bulk-strain components related to the fluid and solid strain-rate are as follows: 

Eo= (eo} [B.I] 

= ((1 - c)ef} + (ce~.> [B.21 

= (1 - c}{e f} + (c}{e,~}. [B.3] 

In the above, c is the solid concentration for a single realization, c = 0 if fluid is sampled and c = 1 
if solid is sampled, the ensemble ( c )  is the bulk solid concentration and is denoted by c in the 
text; eij is the local strain-rate from a single realization; e~ and e,~ are the local fluid and solid 
strain-rate, respectively. The above may also be written in terms of the local gradients of the fluid 
and solid velocity v and u, respectively, as 

Eo _ (1 - c ) f c~v~ c~vj'] + _~_ f Oui Ouj'~ - - s -  • [ B . 4 ]  

For a rigid body, e~ = 0, therefore 

E o= (1 - c}{ef}.  [B.51 

This definition of  the bulk strain-rate was used by Batchelor (1970). 
It is important to realize that there is at least one other way to define the bulk strain-rate E. 

Namely, one would first define the bulk flow velocity as 

u ,  = ( ( 1  - c)v,) + (cu,) 

= ((1 -- c)){v,} + (c}{ui}, 

[B.6] 

[B.71 

where vi and ui are the components of  local fluid and solid velocity, respectively. The bulk strain-rate 
components may thus be defined as 

E~ = 5 \-~xj + dx, ) [B.81 

where the superscript "a"  denotes "alternative". To simplify the matter, let us assume a uniform 
solid concentration. Equation [B.8] becomes 

2 + 
[B.9] 

In general, the two definitions given in [B.4] and [B.9] are not identical. Because although the solid 
particles do not deform, the mass-weighted average velocity of  the solid phase may have 
nonvanishing gradients. 

In the literature, both definitions have been used. It is extremely important to clarify which is 
meant in a given paper before using the results. In this paper, [B.3] (or equivalently [B.4]) is the 
definition for the bulk strain-rate in a mixture flow. For  the purpose of computing bulk stress, the 
mass weighted average fluid and solid stress must first be obtained. The mass-weighted average fluid 
stress is obtained from the local fluid stress which is a function of the local fluid strain-rate e U, not 
the bulk strain-rate E U. In view of  this, when calculating the stress, definition of  the bulk strain-rate 
given by [B.3] or [B.4] is physically more relevant. 

MF 15/2--1 
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APPENDIX C 

This appendix shows that the third term on the r.h.s, of the integrand of [35] is zero for a Stokes 
flow. 

Based on Batchelor's expression for the local strain-rate tensor, one can prove that e~nkni is 
actually identical to zero at r = R: 

( R 5) (rirm~ktnkn~+rkrm6~tnkni 2rmrl- ~{ 5R 3 5R5"~ 
e,,nkni=E~nkn, 1--- 7 +Em,~ -~ 3-~cS'kn'n')~--~r3+ rS/I 

r~rt i'rirknkn~ j 25R 5 

R 5 =E, knkni(l_.~T)+ E frrmnl+rr.nt 2rmrt \ /  5R 3 5R5~ 
mt~" -~ 3 -'~-6iknknl)~--~r3 + r 5 ] 

2 rmrt/25R 3 35RV~ 

[ R 5 4/: 5R 3 5R5~ 2(25R 3 35R5"~] 
=E~,nkni 1-Tr+g~-~r r3  + -Tr - j+3 \  2r 3 2r 5 j ] .  

The last expression is equal to zero when r = R. 


